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SUMMARY 

A finite difference scheme based on the operator-splitting technique with cubic spline hctions is derived for 
solving the two-dimensional Burgers equations in ‘inhomogeneous’ form. The scheme is of first-order accuracy in 
time and second-order accuracy in space direction and is unconditionally stable. The numerical results are 
obtained with sevedmoderate gradients in the initial and boundary conditions and the steady state solutions are 
plotted for different values of the parameters. It is concluded that the resulting scheme works very well even in the 
case of very severe gradient in the solution. Also, the general nature of the scheme provides a wider application in 
the solution of non-linear problems. 
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gradients 

1. INTRODUCTION 

It is known that the Burgers equation is well suited for modelling fluid flows since it incorporates 
directly the interaction between non-linear convection processes and diffusive viscous processes. In 
one and two space variables these equations are respectively 

1 
Re 

Ut + uu, - -24, = 0, 

where Re is the Reynolds number, which often arises in the mathematical modelling of problems in 
fluid dynamics involving turbulence, and the subscripts denote partial derivatives. The reciprocal of Re 
is considered to be the kinematic viscosity. These equations possess the desirable attribute that the 
exact solutions can be constructed readily by invoking the Hopf-Cole transformations.’ Further, the 
two-dimensional Burgers equations are an appropriate test case because the equation structure is 
similar to that of the incompressible fluid flow momentum equations. This system of equations is used 
in models for the study of hydrodynamical turbulence and wave processes in non-linear media. These 
equations have been used as a test case for the numerical methods developed for non-lienar problems 
by several authors (see e.g. References 24 ) .  Iyengar and Pillai’ have developed an implicit finite 
difference scheme based on splines in compression for the one- and two-dimensional Burgers 
equations in homogeneous form. Anninjon and Beauchamp3 have solved these equations by the 
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method of lines. The splitting-up method with cubic spline functions has been used by Jain and Holla! 
They have split the first equation of (2) as 

1 1 1 1 1 
- U t  = -Wy, - u t  =-up 

4 Re p = c u r r ,  
1 
T U t  = -uux, 4 

and in a similar way have split the second equation of (2). Further, each of the above equations can be 
approximated in space by cubic spline functions and in time by forward difference operators to obtain a 
difference scheme. For example, for the first equation they obtained the scheme 

where qj is the discrete approximation of the velocity component u(x,y,t) at the mesh point 
(ih,jh,nk), h is the mesh step in directions x and y, k represents the increments in time 
(i,j = 0,1,2,. . . ,N; n = 0,1,2,. . .), 81c [0,1] is a cubic spline parameter and 

guzj = u;+l,j - 2 q j +  u;-l,j, 
- 

S,u". b J  = p t + l , j  - T - 1 , j f  r = k/h2.  

Similar schemes are derived for the other three equations. Using the approximations 

for space derivatives by involing spline functions, they have solved the aforementioned equations 
successively, where p S x q j  = q+lj - q-lJ. Since both first and second derivatives have (1 + is.") 
in the denominator, these terms in equations (3) can be combined together while splitting the 
equations. In the present investigation we proceed by writing the Burgers equations in matrix form and 
employ the operator-splitting technique instead of the splitting-up technique to take care of the term 

It is worthwhile remarking that challenging non-linear problems involve high discontinuity and 
therefore one should choose an appropriate model to take care of non-linearity with initial and 
boundary conditions having internal or boundary gradients. This will make them more representative 
of real fluid dynamic problems. Keeping this in view, in this paper we have considered the numerical 
solution of the coupled Burgers equations in 'inhomogeneous' form in which a non-linear source term 
is also included. These equations are' 

(1 + &6). 

Even though the exact steady state solution of (4) turns out to be the same as for (2), numerically the 
problem given by (4) is much more difficult compared with (2) since it incorporates an extra non-linear 
term. In this paper the numerical results are obtained with sevedmoderate gradients in the initial and 
boundary conditions and the steady state solutions are plotted for different values of the parameters. 

The detailed plan of the paper is as follows. In Section 2 the system of inhomogeneous coupled 
Burgers equations (4) is recast in matrix form. Using a three-step operator-splitting technique with 
cubic spline functions, the finite difference scheme is derived and it is found that the scheme is 
unconditionally stable and of first-order accuracy with respect to time and second-order accuracy with 
respect to space. The numerical results are presented and discussed in Section 3. It is observed that the 
resulting scheme is efficient and produces satisfactory results in the case of very severe gradients in the 
solution. 
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2. DIFFERENTIAL EQUATIONS AND NUMERICAL SCHEME 

Recasting the system of inhomogeneous coupled Burgers equations (4) in matrix form, we have 

( 5 )  
1 1 U t + F x + G y - R e ( U , +  U,) =-RellUI(’U, 2 

where 

subject to the initial conditions 

U(XlY, 0) = UO(X,Y), ( x , Y ) a  

U(X,Y, t> = W , Y ,  4; X,YCdQ t > 0, 

and the boundary conditions 

where D = [ (x ,y,  t )  : 0 I x,y  5 1, t 2 01 and dD is its boundary, U(x,y ,  t) represents the velocity 
components u(x, y,  t) and v(x, y,  t) to be determined and UO and 9 are known functions. Further, the 
discrete approximation for the velocity components U(x, y ,  t) at the mesh point (xi = ih, 
vj =jh,t = nk) is denoted Uinj (i,j = 0,1 ,2 , .  . . ,N; n = 0,1,2,. . .), where h is the mesh step in 
directions x and y and k is the increment in time. 

In order to solve equation (9, we use the three-step operator-splitting technique as follows: 

(6) 

(7) 

1 
Re 
1 

Re 

fUt = -Fx + - U,, 

&Jt = -Gy + - U,, 

& = Fell ~ 1 1 ’ ~ .  (8) 

Approximating the time derivative by forward differences and the space derivative by the first- and 
second-order derivatives of the cubic spline function &(x) interpolating F;’ and qj 
(i , j  = 1,2,3,. . . , k), equation (6) becomes 

where & , &  E [0,1] and myj and Minj denote the first- and second-order derivatives of the cubic spline 
function Sn (x) respectively. 

Now from the condition of continuity of the first and second derivatives of the cubic spline function 
Sn (x) we have respectively’ 

(10) 

(11) 

3 
h m:+ + 4m: + my- = - (F:+ - F;- 1, j ) ,  

6 
Mi”+ 1, + 4M; + Mi“- 1, = jp 6; u; j .  

On eliminating the space derivatives myj and q’ from equations (9)-(ll), we obtain the following 
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difference approximation to equation (6): 

where 

sJJ;j = u;+1,j - u;-13j, "qyj = ui"+l,j - 2u;j + ui"-l,j, r = k / h 2 .  

In the same way the finite difference approximation to equation (7) is obtained as 

where 03,04 E [0,1]. 
Now for equation (8) we write the finit difference approximation in the form 

The above three equations (12)-(14) are the multistep finite difference formulation of the 
inhomogeneous coupled Burgers equations given by (5). The intermediate values included in 
equations (12) and (13) have been taken as 

where 6, and S: are replaced at the lower boundary i = 0 by 2Ax - A: and A: respectively and at the 
upper boundary i = N by 2Vx + V: and Vf respectively, where 

AXu!'. i 7 j  = u? t + ~ , j -  ' ; j ,  vxu~ j  = qyj - qn- 1, j .  

Similarly we can write down corresponding expressions for Sy and 6;. 

3. STABILITY AND ACCURACY ANALYSIS OF THE SCHEME 

For analysing the stability and accuracy of the scheme, we eliminate the intermediate values, and by 
performing the necessary simplifications, the scheme finally takes the form 

W"+' = QW" + H ,  (17) 
where 

W " =  [$I ,  Q = [ D 1  0 9 '1  ' 
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In the amplification matrix Q, D1 and 9 are given by 

x [ l +  ( ~ - ~ ) 6 : 1 ( l + ~ ~ j [ : 6 : ( ~ ; j ) - l + r h e 3 p 6 x  I1 
where qj and Tj denote the discrete approximations for the velocity components u(x,y,t)  and 
v(x,  y, t) at the mesh point (ih,jh, nk) respectively (i,j = 0, 1,2, . . . N ,  n = 0, 1,2, . . .), and 

in which C1 and C2 are given by 

where 

Now, by using the von Neumann criterion of stability: it is found that the diagonal elements of the 
amplification matrix Q have values less than unity for Oi 2 i, i = 1,2,3,4. Hence the scheme is 
unconditionally stable for Oi 2 $. It has an accuracy of first order with respect to time and second order 
with respect to space because of the following expressions of the local truncaction errors in equations 
(6) and (7) respectively: 
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n i 213 

n i  113 

4. NUMERICAL RESULTS AND DISCUSSION 

With the help of the aforementioned difference scheme we have solved the coupled Burgers equations 
in inhomogeneous form (4). For initial and boundary conditions as mentioned earlier we observed that 
the exact solution of the two-dimensional Burgers equations can be generated by making use of the 
Hopf-Cole transformations' 

where 4 is the solution of 

4t = 4, + &y. 

In the present study we have determined only steady state solutions of the coupled Burgers equations 
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under consideration. From (20) we get the general expressions for u and v as 

(21) 

(22) 

2 
Re a0 + alx + a u  + a3xy + a4 exp[a(x - XO)] + exp[-a(x - XO)] sin(ay) ’ 

2 
Re a0 + alx + a u  + a3xy + a4 exp[a(x - XO)] + exp[-a(x - xo)] cos(ay) ’ 

a1 + a3y + aa4{exp[a(x - XO)] - exp[-a(x - XO)]} cos(ay) u = - -  

a2 + a3x - m4{exp[a(x - xo)] - exp[-a(x - xo)]} sin(ay) v = - -  

where ao, at ,  a2,a3, a4, a and xo can be chosen to give specific features to the flow. The exact steady 
state solutions of the coupled Burgers equations in inhomogeneous form are given by (2 1) and (22) and 
this inhomogeneous form is solved numerically with Dirichlet boundary conditions given by (21) and 
(22) for appropriate choices of the parameters ao, a1 , a2, a3, u4, a and xo and plotted. 

Figures 1 and 2 show plots of u and v respectively for the parameter values 

a0 = al = 110.13, a2 = a3 = 0, a4 = 1.0, a = 5 ,  xo = 1, Re = 10, 

with mesh sizes h = 1/25 and r = 1.5. This is the steady state solution of the coupled Burgers 
equations in inhomogeneous form which is achieved at t=O.002560. It is clear from Figures 1 and 2 
that the solution has a sharp jump on one side for u as well as v but is otherwise smooth. Figures 3 and 
4 depict the steady state solution for the parameter values 

a. = al = 0.011013, a2 = a3 = 0, a4 = 1.0, a =  5 ,  xo = 1, Re = 10. 

In this case we have found severe gmbents at initial points. 
Upon comparing this scheme with the scheme due to Jain and Holla? we find that their scheme does 

not yield satisfactory results in the case of the gradients considered above. They have claimed that their 
results give a good approximation up to intermediate Reynolds numbers when using continuous initial 
conditions. However, when we apply the same scheme to the above-mentioned cases, it does not give 

Figure. 1. Plot of u at steady state for first set of parame& values 
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Figure 2. Plot of v at steady state for first set of parameter values 

any convergent solution for the given parameters, but when we reduce the sharpness in the conditions, 
their scheme works. Hence we can say that our scheme yields good results even in the presence of 
severe gradients in the initialhoundary conditions. 

J 
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Figure 3. Plot of u at steady state for second set of parameter values 
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Figure 4. Plot of v at steady state for second set of parameter values 
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APPENDIX: NOMENCLATURE 

t 
u, v 
4 Y 

Greek letters 
6 
P 
A 
V 
Bi 

II ' II 

time 
velocity components in directions x and y 
Cartesian co-ordinates 
norm 

central difference operator 
averaging operator 
forward difference operator 
backward difference operator 
cubic spline parameter ( i  = 1,2,3,4) 
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